Differential geometric formulation of Maxwell's equations

Maris Ozols

January 16, 2012

Abstract

Maxwell's equations in the differential geometric formulation are as follows: $d \mathrm{~F}=d * \mathrm{~F}=0$. The goal of these notes is to introduce the necessary notation and to derive these equations from the standard differential formulation. Only basic knowledge of linear algebra is assumed.

1 Introduction

Here are Maxwell's equations (in a charge-free vacuum) in their full glory:

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{\partial B_{x}}{\partial t}=\frac{\partial E_{y}}{\partial z}-\frac{\partial E_{z}}{\partial y}, \\
\frac{\partial B_{y}}{\partial t}=\frac{\partial E_{z}}{\partial x}-\frac{\partial E_{x}}{\partial z}, \quad \frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}=0, \\
\frac{\partial B_{z}}{\partial t}=\frac{\partial E_{x}}{\partial y}-\frac{\partial E_{y}}{\partial x},
\end{array}\right. \tag{1}\\
& \left\{\begin{array}{l}
\frac{\partial E_{x}}{\partial t}=\frac{\partial B_{z}}{\partial y}-\frac{\partial B_{y}}{\partial z}, \\
\frac{\partial E_{y}}{\partial t}=\frac{\partial B_{x}}{\partial z}-\frac{\partial B_{z}}{\partial x}, \quad \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}=0 . \\
\frac{\partial E_{z}}{\partial t}=\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y},
\end{array}\right. \tag{2}
\end{align*}
$$

Here $E_{x}(t, x, y, z)$ denotes the strength of the electric field along x-axis at time t and at point (x, y, z); similarly, $B_{x}(t, x, y, z)$ denotes the strength of
the magnetic induction in the same direction and at the same time and same coordinates.

It turns out that using a more modern notation we can rewrite the same equations in a very concise form:

$$
\begin{equation*}
d \mathrm{~F}=0, \quad d * \mathrm{~F}=0 \tag{3}
\end{equation*}
$$

These notes explain the meaning of these two expressions and why they are equivalent to Equations (1) and (2), respectively.

2 Maxwell's equations in the differential form

Let $\mathbf{E}=\left(E_{x}, E_{y}, E_{z}\right)$ and $\mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)$ be vectors that represent the two fields. Then we can rewrite Equations (1) and (2) using vector notation:

$$
\begin{array}{ll}
\frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{E}, & \nabla \cdot \mathbf{B}=0 \\
\frac{\partial \mathbf{E}}{\partial t}=\nabla \times \mathbf{B}, & \nabla \cdot \mathbf{E}=0 \tag{5}
\end{array}
$$

Note that these equations are invariant under the following substitution:

$$
\begin{equation*}
\mathbf{E} \mapsto \mathbf{B}, \quad \mathbf{B} \mapsto-\mathbf{E} . \tag{6}
\end{equation*}
$$

In these equations $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ is a formal vector called nabla. The inner product and cross product with ∇ are defined as follows:

$$
\begin{align*}
\nabla \cdot \mathbf{A} & =\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \tag{7}\\
\nabla \times \mathbf{A} & =\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}, \frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}, \frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \tag{8}
\end{align*}
$$

These two operations can also be expressed using matrix multiplication:

$$
\begin{align*}
\nabla \cdot \mathbf{A} & =\left(\begin{array}{ccc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}
\end{array}\right) \cdot\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right), \tag{9}\\
\nabla \times \mathbf{A} & =\left(\begin{array}{rrr}
0 & -\frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial z} & 0 & -\frac{\partial}{\partial x} \\
-\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0
\end{array}\right) \cdot\left(\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right) . \tag{10}
\end{align*}
$$

3 Differential geometric formulation

3.1 Electromagnetic tensor

Let us combine the vectors \mathbf{E} and \mathbf{B} into a single matrix called the electromagnetic tensor:

$$
F=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \tag{11}\\
-E_{x} & 0 & -B_{z} & B_{y} \\
-E_{y} & B_{z} & 0 & -B_{x} \\
-E_{z} & -B_{y} & B_{x} & 0
\end{array}\right) .
$$

Note that F is skew-symmetric and its upper right 1×3 block is the matrix corresponding to the inner product with \mathbf{E} as in Equation (9); similarly, the lower right 3×3 block corresponds to the cross product with \mathbf{B} as in Equation (10).

3.2 Electromagnetic tensor as a 2-form

We can label the rows and columns of matrix F by (t, x, y, z) and represent it as a 2 -form, i.e., a formal linear combination of elementary 2 -forms (each elementary 2 -form represents one matrix element by the exterior product of the labels of the corresponding row and column). In particular, let

$$
\begin{equation*}
\mathrm{F}=\mathrm{E}+\mathrm{B} \tag{12}
\end{equation*}
$$

where E and B are defined as follows:

$$
\begin{align*}
& \mathrm{E}=E_{x} d t \wedge d x+E_{y} d t \wedge d y+E_{z} d t \wedge d z \tag{13}\\
& \mathrm{~B}=B_{x} d z \wedge d y+B_{y} d x \wedge d z+B_{z} d y \wedge d x \tag{14}
\end{align*}
$$

Here the 2 -forms E and B encode those entries of matrix F that correspond to the electric and magnetic field, respectively.

Note that the matrix representation of vectors \mathbf{E} and \mathbf{B} in Equation (11) is redundant, since each entry appears twice (in particular, F is skewsymmetric). However, Equations (13) and (14) only contain half of the off-diagonal entries of F (those with positive signs); the remaining entries are represented implicitly, since the exterior product is anti-commutative (e.g., $d y \wedge d z=-d z \wedge d y$).

3.3 Hodge dual

Let us introduce an operation known as Hodge star which establishes a duality between k-forms and ($n-k$)-forms. Roughly speaking, it replaces exterior product of k variables by exterior product of the complementary set of $n-k$ variables (up to a constant factor, which depends on the metric tensor and the order of the variables in the two products).

More precisely, let $\sigma=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ be a permutation of $(1,2, \ldots, n)$; then for any $k \in\{0,1, \ldots, n\}$ the Hodge dual of the corresponding elementary k-form is

$$
\begin{equation*}
*\left(d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}}\right)=\operatorname{sgn}(\sigma) \varepsilon_{i_{1}} \varepsilon_{i_{2}} \ldots \varepsilon_{i_{k}} d x_{i_{k+1}} \wedge d x_{i_{k+2}} \wedge \cdots \wedge d x_{i_{n}} \tag{15}
\end{equation*}
$$

where $\operatorname{sgn}(\sigma)$ is the sign of σ and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right) \in\{+1,-1\}^{n}$ is the signature of the metric tensor. Once defined for the standard basis, the Hodge dual is extended by linearity to the rest of the exterior algebra. ${ }^{1}$

If we live in a Minkowski spacetime with signature " + ---" then $n=4$ and $\varepsilon_{t}=-\varepsilon_{x}=-\varepsilon_{y}=-\varepsilon_{z}=1$. For example, we have:

$$
\begin{equation*}
* 1=d t \wedge d x \wedge d y \wedge d z, \quad *(d t \wedge d x \wedge d y \wedge d z)=1 \cdot(-1)^{3}=-1 \tag{16}
\end{equation*}
$$

In particular, "*" is not an involution (i.e., in general $* * f \neq f$). As an exercise, one can check that the Hodge duals of 1 -forms are

$$
\begin{align*}
*(d t) & =d x \wedge d y \wedge d z, \tag{17}\\
*(d x) & =d t \wedge d y \wedge d z, \tag{18}\\
*(d y) & =d t \wedge d x \wedge d z, \tag{19}\\
*(d z) & =d t \wedge d x \wedge d y . \tag{20}
\end{align*}
$$

In fact, since the electromagnetic tensor is described by a 2 -form, we are only interested in duals of 2 -forms. The duals of the elementary 2 -forms are summarized in these two columns of equations:

$$
\begin{array}{rlrl}
*(d t \wedge d x) & =d z \wedge d y, & & *(d z \wedge d y)=-d t \wedge d x, \\
*(d t \wedge d y)=d x \wedge d z, & & *(d x \wedge d z)=-d t \wedge d y, \\
*(d t \wedge d z)=d y \wedge d x, & & *(d y \wedge d x)=-d t \wedge d z \tag{23}
\end{array}
$$

[^0]From this we immediately see that for any $\mathbf{v} \in \mathbb{R}^{3}$ it holds that

$$
\begin{equation*}
* \mathrm{E}(\mathbf{v})=\mathrm{B}(\mathbf{v}), \quad * \mathrm{~B}(\mathbf{v})=-\mathrm{E}(\mathbf{v}) \tag{24}
\end{equation*}
$$

where $\mathrm{E}(\mathbf{v})$ and $\mathrm{B}(\mathbf{v})$ denote the 2-forms defined in Equations (13) and (14) with the coefficients given by the components of vector \mathbf{v}. Notice that this is the same duality that we observed in Equation (6).

3.4 Exterior derivative

Let us define one more operation on the exterior algebra, known as the exterior derivative. It is defined on k-forms as

$$
\begin{equation*}
d\left(f d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}}\right)=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j} \wedge\left(d x_{i_{1}} \wedge d x_{i_{2}} \wedge \cdots \wedge d x_{i_{k}}\right) \tag{25}
\end{equation*}
$$

and extended by linearity. Note that it maps k-forms to $(k+1)$-forms.
Let us compute the derivative of $\mathrm{E}(\mathbf{v})$:

$$
\begin{align*}
d \mathrm{E}(\mathbf{v})= & d\left(-\left(v_{x} d x+v_{y} d y+v_{z} d z\right)\right) \wedge d t \tag{26}\\
= & -\left[\left(\frac{\partial v_{x}}{\partial y} d y+\frac{\partial v_{x}}{\partial z} d z\right) \wedge d x\right. \\
& +\left(\frac{\partial v_{y}}{\partial x} d x+\frac{\partial v_{y}}{\partial z} d z\right) \wedge d y \tag{27}\\
& \left.+\left(\frac{\partial v_{z}}{\partial x} d x+\frac{\partial v_{z}}{\partial y} d y\right) \wedge d z\right] \wedge d t .
\end{align*}
$$

After rearranging terms we get:

$$
\begin{align*}
& d \mathrm{E}(\mathbf{v})=d t \wedge {\left[\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) d z \wedge d y\right.} \\
&+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) d x \wedge d z \tag{28}\\
&\left.+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) d y \wedge d x\right] \\
&=d t \wedge \mathrm{~B}(\nabla \times \mathbf{v}) \tag{29}
\end{align*}
$$

Similarly, for B we have:

$$
\begin{align*}
d \mathrm{~B}(\mathbf{v})= & d\left(v_{x} d z \wedge d y+v_{y} d x \wedge d z+v_{z} d y \wedge d x\right) \tag{30}\\
= & {\left[\left(\frac{\partial v_{x}}{\partial t} d t+\frac{\partial v_{x}}{\partial x} d x\right) \wedge d z \wedge d y\right.} \\
& +\left(\frac{\partial v_{y}}{\partial t} d t+\frac{\partial v_{y}}{\partial y} d y\right) \wedge d x \wedge d z \tag{31}\\
& \left.+\left(\frac{\partial v_{z}}{\partial t} d t+\frac{\partial v_{z}}{\partial z} d z\right) \wedge d y \wedge d x\right]
\end{align*}
$$

After rearranging terms we get:

$$
\begin{align*}
d \mathrm{~B}(\mathbf{v})= & d t \wedge\left(\frac{\partial v_{x}}{\partial t} d z \wedge d y+\frac{\partial v_{y}}{\partial t} d x \wedge d z+\frac{\partial v_{z}}{\partial t} d y \wedge d x\right) \tag{32}\\
& -\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}\right) d x \wedge d y \wedge d z \tag{33}\\
= & d t \wedge \mathrm{~B}\left(\frac{\partial \mathbf{v}}{\partial t}\right)-(\nabla \cdot \mathbf{v}) d x \wedge d y \wedge d z \tag{34}
\end{align*}
$$

3.5 Resulting equations

Let us verify that $d \mathrm{~F}=d * \mathrm{~F}=0$ is equivalent to Equations (4) and (5). First, let us compute $d \mathrm{~F}$:

$$
\begin{align*}
d \mathrm{~F} & =d(\mathrm{E}(\mathbf{E})+\mathrm{B}(\mathbf{B})) \tag{35}\\
& =d t \wedge \mathrm{~B}(\nabla \times \mathbf{E})+d t \wedge \mathrm{~B}\left(\frac{\partial \mathbf{B}}{\partial t}\right)-(\nabla \cdot \mathbf{B}) d x \wedge d y \wedge d z \tag{36}\\
& =d t \wedge \mathrm{~B}\left(\frac{\partial \mathbf{B}}{\partial t}+\nabla \times \mathbf{E}\right)-(\nabla \cdot \mathbf{B}) d x \wedge d y \wedge d z \tag{37}
\end{align*}
$$

By setting $d \mathrm{~F}=0$ we recover Equation (4). Similarly, using Equation (24) we can compute $d * \mathrm{~F}$:

$$
\begin{align*}
d * \mathrm{~F} & =d(\mathrm{~B}(\mathbf{E})-\mathrm{E}(\mathbf{B})) \tag{38}\\
& =d t \wedge \mathrm{~B}\left(\frac{\partial \mathbf{E}}{\partial t}\right)-(\nabla \cdot \mathbf{E}) d x \wedge d y \wedge d z-d t \wedge \mathrm{~B}(\nabla \times \mathbf{B}) \tag{39}\\
& =d t \wedge \mathrm{~B}\left(\frac{\partial \mathbf{E}}{\partial t}-\nabla \times \mathbf{B}\right)-(\nabla \cdot \mathbf{E}) d x \wedge d y \wedge d z \tag{40}
\end{align*}
$$

By setting $d * \mathrm{~F}=0$ we recover Equation (5). Thus $d \mathrm{~F}=0$ and $d * \mathrm{~F}=0$ are equivalent to Equations (4) and (5), respectively.

[^0]: ${ }^{1}$ Note that the order of terms in the exterior product on the right-hand side of Equation (15) can be chosen arbitrarily. However, the exterior product is anti-commutative, so this will be compensated by the sign of the permutation σ. Thus the definition of the Hodge dual is consistent.

